主页 > 编程资料 > PHP >
发布时间:2016-01-27 作者:网络 阅读:192次

1.序言

Golang作为一门出身名门望族的编程语言新星,像豆瓣的Redis平台Codis、类Evernote的云笔记leanote等。

1.1 为什么要学习

如果有人说X语言比Y语言好,两方的支持者经常会激烈地争吵。如果你是某种语言老手,你就是那门语言的“传道者”,下意识地会保护它。无论承认与否,你都已被困在一个隧道里,你看到的完全是局限的。《肖申克的救赎》对此有很好的注脚:

[Red] These walls are funny. First you hate ‘em, then you get used to ‘em. Enough time passes, you get so you depend on them. That's institutionalized.
这些墙很有趣。起初你恨它们,之后你习惯了它们。随着时间流逝,你开始以来它们。这就是体制。
在你还没有被完全“体制化”时,为何不多学些语言,哪怕只是浅尝辄止,潜移默化中也许你的思维壁垒就松动了。不管是Golang还是Ruby还是其他语言,当看到一些语法习惯与之前熟悉的C和Java不同时,的确潜意识里就会产生抵触情绪,觉得这不好,还是自己习惯的那套好。长此以往,如果不能冲破自己的心理,“坐以待毙”,被时间淘汰恐怕只是早晚的事儿。所以这里的关键也 不是非要学习Golang,而是要不断地学!

1.2 用什么工具来开发

Golang也有专门的IDE,但由于最近迷上了Sublime Text神器,所以这里还是用ST来学习Golang。配置步骤与在ST中使用其他语言开发都类似:

安装智能提示插件GoSublime
创建编译配置脚本
点Preferences -> Package Settings -> GoSublime -> User Settings中写入(感觉保存时自动格式化出来的缩进、空格等风格有些“讨厌”,所以就禁掉了):
复制代码 代码如下:
{
    "fmt_enabled": false,
    "env": {   
        "path":"D:\\Program Files (x86)\\Go\bin"
    }
}

点新建Build System产生go.sublime-build中写入:

{
    "path": "D:\\Program Files (x86)\\Go\\bin",
    "cmd": ["go", "run", "${file}"],
    "selector": "source.go"
}

2.你好,世界

Golang版的HelloWorld来了!一眼望去,package和import的声明方式与Java如出一辙,比较明显的区别是:func关键字、每行末尾没有分号、Println()大写的函数名。这个例子虽小,却“五脏俱全”,后面会逐一分析这个小例子中碰到的Golang语法点。
复制代码 代码如下:
package main

import "fmt"

func main() {
    fmt.Println("你好,世界!")
}

2.1 运行方式

Golang提供了go run“解释”执行和go build编译执行两种运行方式,所谓的“解释”执行其实也是编译出了可执行文件后才执行的。
复制代码 代码如下:
$ go run helloworld.go

你好,世界!
复制代码 代码如下:
$ go build helloworld.go
$ ls

helloworld  helloworld.go
复制代码 代码如下:
$ ./helloworld

你好,世界!

2.2 Package管理

上面例子中我们使用的就是fmt包下的Println()函数。Golang约定:我们可以用./或../相对路径来引自己的package;如果不是相对路径,那么go会去$GOPATH/src下查找。

2.3 格式化输出

类似C、Java等语言,Golang的fmt包提供了格式化输出功能,而且像%d、%s等占位符和\t、\r、\n转义也几乎完全一致。但Golang的Println不支持格式化,只有Printf支持,所以我们经常会在后面加入\n换行。此外,Golang加入了%T打印值的类型,%v打印数组等集合的所有元素。
复制代码 代码如下:
package main

import "fmt"
import "math"

/**
 * This is Printer!
 * 布尔值:false
 * 二进制:11111111
 * 八进制:377
 * 十六进制:FF
 * 十进制:255
 * 浮点数:3.141593
 * 字符串:printer
 *
 * 对象类型:int,string,bool,float64
 * 集合:[1 2 3 4 5]
 */
func main() {
    fmt.Println("This is Printer!")

    fmt.Printf("布尔值:%t\n", 1 == 2)
    fmt.Printf("二进制:%b\n", 255)
    fmt.Printf("八进制:%o\n", 255)
    fmt.Printf("十六进制:%X\n", 255)
    fmt.Printf("十进制:%d\n", 255)
    fmt.Printf("浮点数:%f\n", math.Pi)
    fmt.Printf("字符串:%s\n", "printer")

    fmt.Printf("对象类型:%T,%T,%T,%T\n", 1, "hello", true, math.E)
    fmt.Printf("集合:%v\n", [5]int{1, 2, 3, 4, 5})
}

3.语法基础

3.1 变量和常量

虽然Golang是静态类型语言,却用类似JavaScript中的var关键字声明变量。而且像同样是静态语言的Scala一样,支持类型自动推断。有一点很重要的不同是:如果明确指明变量类型的话,类型要放在变量名后面。这有点别扭吧?!后面会看到函数的入参和返回值的类型也要这样声明。
复制代码 代码如下:
package main

import "fmt"

/**
 * 单变量声明:num[100], word[hello]
 * 多变量声明:i[1], i[2], k[3]
 * 推导类型:b1[true], b2[false]
 * 常量:age[20], pi[3.141593]
 */
func main() {
    var num int = 100
    var word string = "hello"
    fmt.Printf("单变量声明:num[%d], word[%s]\n", num, word)

    var i, j, k int = 1, 2, 3
    fmt.Printf("多变量声明:i[%d], i[%d], k[%d]\n", i, j, k)

    var b1 = true
    b2 := false
    fmt.Printf("推导类型:b1[%t], b2[%t]\n", b1, b2)

    const age int = 20
    const pi float32 = 3.1415926
    fmt.Printf("常量:age[%d], pi[%f]\n", age, pi)
}

3.2 控制语句

作为最基本的语法要素,Golang的各种控制语句也是特点鲜明。在对C继承发扬的同时,也有自己的想法融入其中:

if/switch/for的条件部分都没有圆括号,但必须有花括号。
switch的case中不需要break。《C专家编程》里也“控诉”了C的fall-through问题。既然90%以上的情况都要break,为何不将break作为case的默认行为?而且编程语言后来者也鲜有纠正这一问题的。
switch的case条件可以是多个值。
Golang中没有while。
复制代码 代码如下:
package main

import "fmt"

/**
 * testIf: x[2] is even
 * testIf: x[3] is odd
 *
 * testSwitch: One
 * testSwitch: Two
 * testSwitch: Three, Four, Five [3]
 * testSwitch: Three, Four, Five [4]
 * testSwitch: Three, Four, Five [5]
 *
 * 标准模式:[0] [1] [2] [3] [4] [5] [6]
 * While模式:[0] [1] [2] [3] [4] [5] [6]
 * 死循环模式:[0] [1] [2] [3] [4] [5] [6]
 */
func main() {
    testIf(2)
    testIf(3)
    testSwitch(1)
    testSwitch(2)
    testSwitch(3)
    testSwitch(4)
    testSwitch(5)
    testFor(7)
}

func testIf(x int) {
    if x % 2 == 0 {
        fmt.Printf("testIf: x[%d] is even\n", x)
    } else {
        fmt.Printf("testIf: x[%d] is odd\n", x)
    }
}

func testSwitch(i int) {
    switch i {
        case 1:
            fmt.Println("testSwitch: One")
        case 2:
            fmt.Println("testSwitch: Two")
        case 3, 4, 5:
            fmt.Printf("testSwitch: Three, Four, Five [%d]\n", i)
        default:
            fmt.Printf("testSwitch: Invalid value[%d]\n", i)
    }
}

func testFor(upper int) {
    fmt.Print("标准模式:")
    for i := 0; i < upper; i++ {
        fmt.Printf("[%d] ", i)
    }
    fmt.Println()

    fmt.Print("While模式:")
    j := 0
    for j < upper {
        fmt.Printf("[%d] ", j)
        j++
    }
    fmt.Println()

    fmt.Print("死循环模式:")
    k := 0
    for {
        if (k >= upper) {
            break
        }
        fmt.Printf("[%d] ", k)
        k++
    }
    fmt.Println()
}

分号和花括号
分号由词法分析器在扫描源代码过程自动插入的,分析器使用简单的规则:如果在一个新行前方的最后一个标记是一个标识符(包括像int和float64这样的单词)、一个基本的如数值这样的文字、或break continue fallthrough return ++ – ) }中的一个时,它就会自动插入分号。
分号的自动插入规则产生了“蝴蝶效应”:所有控制结构的左花括号不都能放在下一行。因为按照上面的规则,这样做会导致分析器在左花括号的前方插入一个分号,从而引起难以预料的结果。所以Golang中是不能随便换行的。
3.3 函数

函数有几点不同:

func关键字。
最大的不同就是“倒序”的类型声明。
不需要函数原型,引用的函数可以后定义。这一点很好,真不喜欢C语言里要么将“最底层抽象”的函数放在最前面定义,要么写一堆函数原型声明在最前面。
3.4 集合

Golang提供了数组和Map作为基本数据结构:

数组中的元素会自动初始化,例如int数组元素初始化为0
切片(借鉴Python)的区间跟主流语言一样,都是 “左闭右开”
用 range()遍历数组和Map
复制代码 代码如下:
package main

import "fmt"

/**
 * Array未初始化:  [0 0 0 0 0]
 * Array赋值:  [0 10 0 20 0]
 * Array初始化:  [0 1 2 3 4 5]
 * Array二维:  [[0 1 2] [1 2 3]]
 * Array切片: [2 3] [0 1 2 3] [2 3 4 5]
 *
 * Map哈希表:map[one:1 two:2 three:3],长度[3]
 * Map删除元素后:map[one:1 three:3],长度[2]
 * Map打印:
 *  one => 1
 *  four => 4
 *  three => 3
 *  five => 5
 */
func main() {
    testArray()
    testMap()
}

func testArray() {
    var a [5]int
    fmt.Println("Array未初始化: ", a)

    a[1] = 10
    a[3] = 20
    fmt.Println("Array赋值: ", a)

    b := []int{0, 1, 2, 3, 4, 5}
    fmt.Println("Array初始化: ", b)

    var c [2][3]int
    for i := 0; i < 2; i++ {
        for j := 0; j < 3; j++ {
            c[i][j] = i + j
        }
    }
    fmt.Println("Array二维: ", c)

    d := b[2:4] // b[3,4]
    e := b[:4]  // b[1,2,3,4]
    f := b[2:]  // b[3,4,5]
    fmt.Println("Array切片:", d, e, f)
}

func testMap() {
    m := make(map[string]int)

    m["one"] = 1
    m["two"] = 2
    m["three"] = 3
    fmt.Printf("Map哈希表:%v,长度[%d]\n", m, len(m))

    delete(m, "two")
    fmt.Printf("Map删除元素后:%v,长度[%d]\n", m, len(m))

    m["four"] = 4
    m["five"] = 5
    fmt.Println("Map打印:")
    for key, val := range m {
        fmt.Printf("\t%s => %d\n", key, val)
    }
    fmt.Println()
}

3.5 指针和内存分配

Golang中可以使用指针,并提供了两种内存分配机制:

new:分配长度为0的空白内存,返回类型T*。
make:仅用于 切片、map、chan消息管道,返回类型T而不是指针。
复制代码 代码如下:
package main

import "fmt"

/**
 * 整数i=[10],指针pInt=[0x184000c0],指针指向*pInt=[10]
 * 整数i=[3],指针pInt=[0x184000c0],指针指向*pInt=[3]
 * 整数i=[5],指针pInt=[0x184000c0],指针指向*pInt=[5]
 *
 * Wild的数组指针:
 * Wild的数组指针==nil[true]
 *
 * New分配的数组指针: &[]
 * New分配的数组指针[0x18443010],长度[0]
 * New分配的数组指针==nil[false]
 * New分配的数组指针Make后: &[0 0 0 0 0 0 0 0 0 0]
 * New分配的数组元素[3]: 23
 *
 * Make分配的数组引用: [0 0 0 0 0 0 0 0 0 0]
 */
func main() {
    testPointer()
    testMemAllocate()
}

func testPointer() {
    var i int = 10;
    var pInt *int = &i;
    fmt.Printf("整数i=[%d],指针pInt=[%p],指针指向*pInt=[%d]\n",
                    i, pInt, *pInt)

    *pInt = 3
    fmt.Printf("整数i=[%d],指针pInt=[%p],指针指向*pInt=[%d]\n",
                    i, pInt, *pInt)

    i = 5
    fmt.Printf("整数i=[%d],指针pInt=[%p],指针指向*pInt=[%d]\n",
                    i, pInt, *pInt)
}

func testMemAllocate() {
    var pNil *[]int
    fmt.Println("Wild的数组指针:", pNil)
    fmt.Printf("Wild的数组指针==nil[%t]\n", pNil == nil)

    var p *[]int = new([]int)
    fmt.Println("New分配的数组指针:", p)
    fmt.Printf("New分配的数组指针[%p],长度[%d]\n", p, len(*p))
    fmt.Printf("New分配的数组指针==nil[%t]\n", p == nil)

    //Error occurred
    //(*p)[3] = 23

    *p = make([]int, 10)
    fmt.Println("New分配的数组指针Make后:", p)
    (*p)[3] = 23
    fmt.Println("New分配的数组元素[3]:", (*p)[3])

    var v []int = make([]int, 10)
    fmt.Println("Make分配的数组引用:", v)
}

3.6 面向对象编程

Golang的结构体跟C有几点不同:

结构体可以有方法,其实也就相当于OOP中的类了。
支持带名称的初始化。
用指针访问结构中的属性也用”.”而不是”->”,指针就像Java中的引用一样。
没有public,protected,private等访问权限控制。C也没有protected,C中默认是public的,private需要加static关键字限定。Golang中方法名大写就是public的,小写就是private的。
同时,Golang支持接口和多态,而且接口有别于Java中继承和实现的方式,而是采取了类似Ruby中更为新潮的Duck Type。只要struct与interface有相同的方法,就认为struct实现了这个接口。就好比只要能像鸭子那样叫,我们就认为它是一只鸭子一样。
复制代码 代码如下:
package main

import (
    "fmt"
    "math"
)

// -----------------
//      Struct
// -----------------

type Person struct {
    name    string
    age     int
    email   string
}

func (p *Person) getName() string {
    return p.name
}

// -------------------
//      Interface
// -------------------

type shape interface {
    area() float64
}

type rect struct {
    width float64
    height float64
}

func (r *rect) area() float64 {
    return r.width * r.height
}

type circle struct {
    radius float64
}

func (c *circle) area() float64 {
    return math.Pi * c.radius * c.radius
}

// -----------------
//      Test
// -----------------

/**
 * 结构Person[{cdai 30 cdai@gmail.com}],姓名[cdai]
 * 结构Person指针[&{cdai 30 cdai@gmail.com}],姓名[cdai]
 * 用指针修改结构Person为[{carter 40 cdai@gmail.com}]
 *
 * Shape[0]周长为[13.920000]
 * Shape[1]周长为[58.088048]
 */
func main() {
    testStruct()
    testInterface()
}

func testStruct() {
    p1 := Person{"cdai", 30, "cdai@gmail.com"}
    p1 = Person{name: "cdai", age: 30, email: "cdai@gmail.com"}
    fmt.Printf("结构Person[%v],姓名[%s]\n", p1, p1.getName())

    ptr1 := &p1
    fmt.Printf("结构Person指针[%v],姓名[%s]\n", ptr1, ptr1.getName())

    ptr1.age = 40
    ptr1.name = "carter"
    fmt.Printf("用指针修改结构Person为[%v]\n", p1)
}

func testInterface() {
    r := rect { width: 2.9, height: 4.8 }
    c := circle { radius: 4.3 }

    s := []shape{ &r, &c }
    for i, sh := range s {
        fmt.Printf("Shape[%d]周长为[%f]\n", i, sh.area())
    }
}

3.7 异常处理

Golang中异常的使用比较简单,可以用errors.New创建,也可以实现Error接口的方法来自定义异常类型,同时利用函数的多返回值特性可以返回异常类。比较复杂的是defer和recover关键字的使用。Golang没有采取try-catch“包住”可能出错代码的这种方式,而是用 延迟处理 的方式。

用defer调用的函数会以后进先出(LIFO)的方式,在当前函数结束后依次顺行执行。defer的这一特点正好可以用来处理panic。当panic被调用时,它将立即停止当前函数的执行并开始逐级解开函数堆栈,同时运行所有被defer的函数。如果这种解开达到堆栈的顶端,程序就死亡了。但是,也可以使用内建的recover函数来重新获得Go程的控制权并恢复正常的执行。由于仅在解开期间运行的代码处在被defer的函数之内,recover仅在被延期的函数内部才是有用的。
复制代码 代码如下:
package main

import (
    "fmt"
    "errors"
    "os"
)

/**
 * 自定义Error类型,实现内建Error接口
 * type Error interface {
 *      Error() string
 * }
 */
type MyError struct {
    arg int
    msg string
}

func (e *MyError) Error() string {
    return fmt.Sprintf("%d - %s", e.arg, e.msg)
}

/**
 * Failed[*errors.errorString]: Bad Arguments - negative!
 * Success:  16
 * Failed[*main.MyError]: 1000 - Bad Arguments - too large!
 *
 * Recovered! Panic message[Cannot find specific file]
 * 4 3 2 1 0
 */
func main() {
    // 1.Test error
    args := []int{-1, 4, 1000}
    for _, i := range args {
        if r, e := testError(i); e != nil {
            fmt.Printf("Failed[%T]: %v\n", e, e)
        } else {
            fmt.Println("Success: ", r)
        }
    }

    // 2.Test defer
    src, err := os.Open("control.go")
    if (err != nil) {
        fmt.Printf("打开文件错误[%v]\n", err)
        return
    }
    defer src.Close()
    // use src...

    for i := 0; i < 5; i++ {
        defer fmt.Printf("%d ", i)
    }

    // 3.Test panic/recover
    defer func() {
        if r := recover(); r != nil {
            fmt.Printf("Recovered! Panic message[%s]\n", r)
        }
    }()

    _, err2 := os.Open("test.go")
    if (err2 != nil) {
        panic("Cannot find specific file")
    }
}

func testError(arg int) (int, error) {
    if arg < 0 {
        return -1, errors.New("Bad Arguments - negative!")
    } else if arg > 256 {
        return -1, &MyError{ arg, "Bad Arguments - too large!" }
    } else {
        return arg * arg, nil
    }
}

4.高级特性

上面介绍的只是Golang的基本语法和特性,尽管像控制语句的条件不用圆括号、函数多返回值、switch-case默认break、函数闭包、集合切片等特性相比Java的确提高了开发效率,但这些在其他语言中也都有,并不是Golang能真正吸引人的地方。不仅是Golang,我们学习任何语言当然都是从基本语法特性着手,但学习时要不断地问自己:使这门语言区别于其他语言的”独到之处“在哪?这种独到之处往往反映了语言的设计思想、出发点、要解决的”痛点“,这才是一门语言或任何技术的立足之本。

4.1 goroutine

goroutine使用go关键字来调用函数,也可以使用匿名函数。可以简单的把go关键字调用的函数想像成pthread_create。如果一个goroutine没有被阻塞,那么别的goroutine就不会得到执行。也就是说goroutine阻塞时,Golang会切换到其他goroutine执行,这是非常好的特性!Java对类似goroutine这种的协程没有原生支持,像Akka最害怕的就是阻塞。因为协程不等同于线程,操作系统不会帮我们完成“现场”保存和恢复,所以要实现goroutine这种特性,就要模拟操作系统的行为,保存方法或函数在协程“上下文切换”时的Context,当阻塞结束时才能正确地切换回来。像Kilim等协程库利用字节码生成,能够胜任,而Akka完全是运行时的。

注意:如果你要真正的并发,需要调用runtime.GOMAXPROCS(CPU_NUM)设置。
复制代码 代码如下:
package main

import "fmt"

func main() {
    go f("goroutine")

    go func(msg string) {
        fmt.Println(msg)
    }("going")

    // Block main thread
    var input string
    fmt.Scanln(&input)
    fmt.Println("done")
}

func f(msg string) {
    fmt.Println(msg)
}

4.2 原子操作

像Java一样,Golang支持很多CAS操作。运行结果是unsaftCnt可能小于200,因为unsafeCnt++在机器指令层面上不是一条指令,而可能是从内存加载数据到寄存器、执行自增运算、保存寄存器中计算结果到内存这三部分,所以不进行保护的话有些更新是会丢失的。
复制代码 代码如下:
package main

import (
    "fmt"
    "time"
    "sync/atomic"
    "runtime"
)

func main() {
    // IMPORTANT!!!
    runtime.GOMAXPROCS(4)

    // thread-unsafe
    var unsafeCnt int32 = 0
    for i := 0; i < 10; i++ {
        go func() {
            for i := 0; i < 20; i++ {
                time.Sleep(time.Millisecond)
                unsafeCnt++
            }
        }()
    }
    time.Sleep(time.Second)
    fmt.Println("cnt: ", unsafeCnt)

    // CAS toolkit
    var cnt int32 = 0
    for i := 0; i < 10; i++ {
        go func() {
            for i := 0; i < 20; i++ {
                time.Sleep(time.Millisecond)
                atomic.AddInt32(&cnt, 1)
            }
        }()
    }

    time.Sleep(time.Second)
    cntFinal := atomic.LoadInt32(&cnt)
    fmt.Println("cnt: ", cntFinal)
}

神奇CAS的原理
Golang的AddInt32()类似于Java中AtomicInteger.incrementAndGet(),其伪代码可以表示如下。二者的基本思想是一致的,本质上是 乐观锁:首先,从内存位置M加载要修改的数据到寄存器A中;然后,修改数据并保存到另一寄存器B;最终,利用CPU提供的CAS指令(Java通过JNI调用到)用一条指令完成:1)A值与M处的原值比较;2)若相同则将B值覆盖到M处。
若不相同,则CAS指令会失败,说明从内存加载到执行CAS指令这一小段时间内,发生了上下文切换,执行了其他线程的代码修改了M处的变量值。那么重新执行前面几个步骤再次尝试。
ABA问题:即另一线程修改了M位置的数据,但是从原值改为C,又从C改回原值。这样上下文切换回来,CAS指令发现M处的值“未改变”(实际是改了两次,最后改回来了),所以CAS指令正常执行,不会失败。这种问题在Java中可以用AtomicStampedReference/AtomicMarkableReference解决。
复制代码 代码如下:
public final int incrementAndGet() {
    for (;;) {
        int current = get();
        int next = current + 1;
        if (compareAndSet(current, next))
            return next;
    }
}

4.3 Channel管道

通过前面可以看到,尽管goroutine很方便很高效,但如果滥用的话很可能会导致并发安全问题。而Channel就是用来解决这个问题的,它是goroutine之间通信的桥梁,类似Actor模型中每个Actor的mailbox。多个goroutine要修改一个状态时,可以将请求都发送到一个Channel里,然后由一个goroutine负责顺序地修改状态。

Channel默认是阻塞的,也就是说select时如果没有事件,那么当前goroutine会发生读阻塞。同理,Channel是有大小的,当Channel满了时,发送方会发生写阻塞。Channel这种阻塞的特性加上goroutine可以很容易就能实现生产者-消费者模式。

用case可以给Channel设置阻塞的超时时间,避免一直阻塞。而default则使select进入无阻塞模式。
复制代码 代码如下:
package main

import (
    "fmt"
    "time"
)

/**
 * Output:
 * received message: hello
 * received message: world
 *
 * received from channel-1: Hello
 * received from channel-2: World
 *
 * received message: hello
 * Time out!
 *
 * Nothing received!
 * received message: hello
 * Nothing received!
 * Nothing received!
 * Nothing received!
 * Nothing received!
 * Nothing received!
 * Nothing received!
 * Nothing received!
 * Nothing received!
 * Nothing received!
 * received message: world
 * Nothing received!
 * Nothing received!
 * Nothing received!
 */
func main() {
    listenOnChannel()
    selectTwoChannels()

    blockChannelWithTimeout()
    unblockChannel()
}

func listenOnChannel() {
    // Specify channel type and buffer size
    channel := make(chan string, 5)

    go func() {
        channel <- "hello"
        channel <- "world"
    }()

    for i := 0; i < 2; i++ {
        msg := <- channel
        fmt.Println("received message: " + msg)
    }
}

func selectTwoChannels() {
    c1 := make(chan string)
    c2 := make(chan string)

    go func() {
        time.Sleep(time.Second)
        c1 <- "Hello"
    }()
    go func() {
        time.Sleep(time.Second)
        c2 <- "World"
    }()

    for i := 0; i < 2; i++ {
        select {
            case msg1 := <- c1:
                fmt.Println("received from channel-1: " + msg1)
            case msg2 := <- c2:
                fmt.Println("received from channel-2: " + msg2)
        }
    }
}

func blockChannelWithTimeout() {
    channel := make(chan string, 5)

    go func() {
        channel <- "hello"
        // Sleep 10 sec
        time.Sleep(time.Second * 10)
        channel <- "world"
    }()

    for i := 0; i < 2; i++ {
        select {
            case msg := <- channel:
                fmt.Println("received message: " + msg)
            // Set timeout 5 sec
            case <- time.After(time.Second * 5):
                fmt.Println("Time out!")
        }
    }
}

func unblockChannel() {
    channel := make(chan string, 5)

    go func() {
        channel <- "hello"
        time.Sleep(time.Second * 10)
        channel <- "world"
    }()

    for i := 0; i < 15; i++ {
        select {
            case msg := <- channel:
                fmt.Println("received message: " + msg)
            default:
                fmt.Println("Nothing received!")
                time.Sleep(time.Second)
        }
    }
}

4.4 缓冲流

Golang的bufio包提供了方便的缓冲流操作,通过strings或网络IO得到流后,用bufio.NewReader/Writer()包装:

缓冲区:Peek()或Read时,数据会从底层进入到缓冲区。缓冲区默认大小为4096字节。
切片和拷贝:Peek()和ReadSlice()得到的都是切片(缓冲区数据的引用)而不是拷贝,所以更加节约空间。但是当缓冲区数据变化时,切片也会随之变化。而ReadBytes/String()得到的都是数据的拷贝,可以放心使用。
Unicode支持:ReadRune()可以直接读取Unicode字符。有意思的是Golang中Unicode字符也要用单引号,这点与Java不同。
分隔符:ReadSlice/Bytes/String()得到的包含分隔符,bufio不会自动去掉。
Writer:对应地,Writer提供了WriteBytes/String/Rune。
undo方法:可以将读出的字节再放回到缓冲区,就像什么都没发生一样。
复制代码 代码如下:
package main

import (
    "fmt"
    "strings"
    "bytes"
    "bufio"
)

/**
 * Buffered: 0
 * Buffered after peek: 7
 * ABCDE
 * AxCDE
 *
 * abcdefghijklmnopqrst 20
 * uvwxyz1234567890     16
 *                      0  EOF
 *
 * "ABC "
 * "DEF "
 * "GHI"
 *
 * "ABC "
 * "DEF "
 * "GHI"
 *
 * read unicode=[你], size=[3]
 * read unicode=[好], size=[3]
 * read(after undo) unicode=[好], size=[3]
 *
 * Available: 4096
 * Buffered: 0
 * Available after write: 4088
 * Buffered after write: 8
 * Buffer after write: ""
 * Available after flush: 4096
 * Buffered after flush: 0
 * Buffer after flush: "ABCDEFGH"
 *
 * Hello,世界!
 */
func main() {
    testPeek()
    testRead()
    testReadSlice()
    testReadBytes()
    testReadUnicode()

    testWrite()
    testWriteByte()
}

func testPeek() {
    r := strings.NewReader("ABCDEFG")
    br := bufio.NewReader(r)

    fmt.Printf("Buffered: %d\n", br.Buffered())

    p, _ := br.Peek(5)
    fmt.Printf("Buffered after peek: %d\n", br.Buffered())
    fmt.Printf("%s\n", p)

    p[1] = 'x'
    p, _ = br.Peek(5)
    fmt.Printf("%s\n", p)
}

func testRead() {
    r := strings.NewReader("abcdefghijklmnopqrstuvwxyz1234567890")
    br := bufio.NewReader(r)
    b := make([]byte, 20)

    n, err := br.Read(b)
    fmt.Printf("%-20s %-2v %v\n", b[:n], n, err)

    n, err = br.Read(b)
    fmt.Printf("%-20s %-2v %v\n", b[:n], n, err)

    n, err = br.Read(b)
    fmt.Printf("%-20s %-2v %v\n", b[:n], n, err)
}

func testReadSlice() {
    r := strings.NewReader("ABC DEF GHI")
    br := bufio.NewReader(r)

    w, _ := br.ReadSlice(' ')
    fmt.Printf("%q\n", w)

    w, _ = br.ReadSlice(' ')
    fmt.Printf("%q\n", w)

    w, _ = br.ReadSlice(' ')
    fmt.Printf("%q\n", w)
}

func testReadBytes() {
    r := strings.NewReader("ABC DEF GHI")
    br := bufio.NewReader(r)

    w, _ := br.ReadBytes(' ')
    fmt.Printf("%q\n", w)

    w, _ = br.ReadSlice(' ')
    fmt.Printf("%q\n", w)

    s, _ := br.ReadString(' ')
    fmt.Printf("%q\n", s)
}

func testReadUnicode() {
    r := strings.NewReader("你好,世界!")
    br := bufio.NewReader(r)

    c, size, _ := br.ReadRune()
    fmt.Printf("read unicode=[%c], size=[%v]\n", c, size)

    c, size, _ = br.ReadRune()
    fmt.Printf("read unicode=[%c], size=[%v]\n", c, size)

    br.UnreadRune()
    c, size, _ = br.ReadRune()
    fmt.Printf("read(after undo) unicode=[%c], size=[%v]\n", c, size)
}

func testWrite() {
    b := bytes.NewBuffer(make([]byte, 0))
    bw := bufio.NewWriter(b)

    fmt.Printf("Available: %d\n", bw.Available())
    fmt.Printf("Buffered: %d\n", bw.Buffered())

    bw.WriteString("ABCDEFGH")
    fmt.Printf("Available after write: %d\n", bw.Available())
    fmt.Printf("Buffered after write: %d\n", bw.Buffered())
    fmt.Printf("Buffer after write: %q\n", b)

    bw.Flush()
    fmt.Printf("Available after flush: %d\n", bw.Available())
    fmt.Printf("Buffered after flush: %d\n", bw.Buffered())
    fmt.Printf("Buffer after flush: %q\n", b)
}

func testWriteByte() {
    b := bytes.NewBuffer(make([]byte, 0))
    bw := bufio.NewWriter(b)

    bw.WriteByte('H')
    bw.WriteByte('e')
    bw.WriteByte('l')
    bw.WriteByte('l')
    bw.WriteByte('o')
    bw.WriteString(",")
    bw.WriteRune('世')
    bw.WriteRune('界')
    bw.WriteRune('!')
    bw.Flush()

    fmt.Println(b)
}

4.5 并发控制

sync包中的WaitGroup是个很有用的类,类似信号量。wg.Add()和Done()能够加减WaitGroup(信号量)的值,而Wait()会挂起当前线程直到信号量变为0。下面的例子用WaitGroup的值表示正在运行的goroutine数量。在goroutine中,用defer Done()确保goroutine正常或异常退出时,WaitGroup都能减一。
复制代码 代码如下:
package main

import (
    "fmt"
    "sync"
)

/**
 * I'm waiting all goroutines on wg done
 * I'm done=[0]
 * I'm done=[1]
 * I'm done=[2]
 * I'm done=[3]
 * I'm done=[4]
 * I'm done=[5]
 * I'm done=[6]
 * I'm done=[7]
 * I'm done=[8]
 * I'm done=[9]
 */
func main() {
    var wg sync.WaitGroup
    for i := 0; i < 10; i++ {
        wg.Add(1)
        go func(id int) {
            defer wg.Done()
            fmt.Printf("I'm done=[%d]\n", id)
        }(i)
    }

    fmt.Println("I'm waiting all goroutines on wg done")
    wg.Wait()
}

4.6 网络编程

Golang的net包的抽象层次还是挺高的,用不了几行代码就能实现一个简单的TCP或HTTP服务端了。

4.6.1 Socket编程
复制代码 代码如下:
package main

import (
    "net"
    "fmt"
    "io"
)

/**
 * Starting the server
 * Accept the connection:  127.0.0.1:14071
 * Warning: End of data EOF
 */
func main() {
    listener, err := net.Listen("tcp", "127.0.0.1:12345")
    if err != nil {
        panic("error listen: " + err.Error())
    }
    fmt.Println("Starting the server")

    for {
        conn, err := listener.Accept()
        if err != nil {
            panic("error accept: " + err.Error())      
        }
        fmt.Println("Accept the connection: ", conn.RemoteAddr())
        go echoServer(conn)
    }
}

func echoServer(conn net.Conn) {
    buf := make([]byte, 1024)
    defer conn.Close()

    for {
        n, err := conn.Read(buf)
        switch err {
            case nil:
                conn.Write(buf[0:n])
            case io.EOF:
                fmt.Printf("Warning: End of data %s\n", err)
                return
            default:
                fmt.Printf("Error: read data %s\n", err)
                return
        }
    }
}

4.6.2 Http服务器
复制代码 代码如下:
package main

import (
    "fmt"
    "log"
    "net/http"
)

func main() {
    http.HandleFunc("/hello", handleHello)
    fmt.Println("serving on http://localhost:7777/hello")
    log.Fatal(http.ListenAndServe("localhost:7777", nil))
}

func handleHello(w http.ResponseWriter, req *http.Request) {
    log.Println("serving", req.URL)
    fmt.Fprintln(w, "Hello, world!")
}

5.结束语

5.1 Golang初体验

Golang的某些语法的确很简洁,像行尾无分号、条件语句无括号、类型推断、函数多返回值、异常处理、原生协程支持、DuckType继承等,尽管很多并不是Golang首创,但结合到一起写起来还是很舒服的。

当然Golang也有让人“不爽”的地方。像变量和函数中的类型声明写在后面简直是“反人类”!同样是颠覆,switch的case默认会break就很实用。另外,因为Golang主要还是想替代C做系统开发,所以像类啊、包啊还是能看到C的影子,例如类声明只有成员变量而不会包含方法实现等,支持全局函数等,所以有时看到aaa.bbb()还是有点迷糊,不知道aaa是包名还是实例名。

5.2 如何学习一门语言

当我们谈到学习英语时,想到的可能是背单词、学语法、练习听说读写。对于编程语言来说,背单词(关键字)、学语法(语法规则)少不了,可听说读写只剩下了“写”,因为我们说话的对象是“冷冰冰”的计算机。所以唯一的捷径就是“写”,不断地练习!

此外,学的语言多了也能总结出一些规律。首先是基础语法,包括了变量和常量、控制语句、函数、集合、OOP、异常处理、控制台输入输出、包管理等。然后是高级特性就差别比较大了。专注高并发的语言就要看并发方面的特性,专注OOP的语言就要看有哪些抽象层次更高的特性等等。还是那句话,基础语言只能说我们会用,而能够区别一门语言的高级特性才是它的根本和灵魂,也是我们要着重学习和领悟的地方。

关键字词:Golang  

必填

◎已有0人评论

加载更多

打赏

weixin alipay